12 research outputs found

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude

    Model-Based Estimation of Ankle Joint Stiffness During Dynamic Tasks:a Validation-Based Approach

    Get PDF
    Joint stiffness estimation under dynamic conditions still remains a challenge. Current stiffness estimation methods often rely on the external perturbation of the joint. In this study, a novel 'perturbation-free' stiffness estimation method via electromyography (EMG)-driven musculoskeletal modeling was validated for the first time against system identification techniques. EMG signals, motion capture, and dynamic data of the ankle joint were collected in an experimental setup to study the ankle joint stiffness in a controlled way, i.e. at a movement frequency of 0.6 Hz as well as in the presence and absence of external perturbations. The model-based joint stiffness estimates were comparable to system identification techniques. The ability to estimate joint stiffness at any instant of time, with no need to apply joint perturbations, might help to fill the gap of knowledge between the neural and the muscular systems and enable the subsequent development of tailored neurorehabilitation therapies and biomimetic prostheses and orthoses

    Estimation of Time-Varying Ankle Joint Stiffness Under Dynamic Conditions via System Identification Techniques

    Get PDF
    An important goal in the design of next-generation exoskeletons and limb prostheses is to replicate human limb dynamics. Joint impedance determines the dynamic relation between joint displacement and torque. Joint stiffness is the position-dependent component of joint impedance and is key in postural control and movement. However, the mechanisms to modulate joint stiffness are not fully understood yet. The goal of this study is to conduct a systematic analysis on how humans modulate ankle stiffness. Time-varying stiffness was estimated for six healthy subjects under isometric, as well as quick and slow dynamic conditions via system identification techniques; specifically, an ensemble-based algorithm using short segments of ankle torque and position recordings. Our results show that stiffness had the lowest magnitude under quick dynamic conditions. Under isometric conditions, with fixed position and varying muscle activity, stiffness exhibited a higher magnitude. Finally, under slow dynamic conditions, stiffness was found to be the highest. Our results highlight, for the first time, the variability in stiffness modulation strategies across conditions, especially across movement velocity

    Incremental Nonlinear Dynamic Inversion Flight Control: Stability and Robustness Analysis and Improvements

    No full text
    Incremental Nonlinear Dynamic Inversion (INDI) is a variation on Nonlinear Dynamic Inversion (NDI) retaining the high-performance advantages of NDI, while increasing controller robustness to model uncertainties and decreasing the dependency on the vehicle model. After a successful flight test with a multirotor Micro Aerial Vehicle (MAV), the question arises whether this technique can be used to successfully design a Flight Control System (FCS) for aircraft in general. This requires additional research on aircraft characteristics that could cause issues related to the stability and performance of the INDI controller. Typical characteristics are additional time delays due to data buses and measurement systems, slower actuator and sensor dynamics, and a lower control frequency. The main contributions of this article are 1) an analytical stability analysis showing that implementing discrete-time INDI with a sampling time smaller than 0.02s results in large stability margins regarding system characteristics and controller gains; 2) a simulation study showing significant performance degradation requiring controller adaptation due to actuator measurement bias, angular rate measurement noise, angular rate measurement delay and actuator measurement delay; 3) the use of a real-time time delay identification algorithm based on latency to successfully synchronize the angular rate and actuator measurement delay together with pseudo control hedging (PCH) to prevent oscillatory behavior; and 4) recommendations regarding control modes, assessment criteria and PH-LAB Cessna Citation specific issues to be used by future contributors to a flight test with INDI on the PH-LAB aircraft.Aerospace EngineeringControl & OperationsControl & Simulatio
    corecore